Risk and contributing factors of ecosystem shifts over naturally vegetated land under climate change in China
نویسندگان
چکیده
Identifying the areas at risk of ecosystem transformation and the main contributing factors to the risk is essential to assist ecological adaptation to climate change. We assessed the risk of ecosystem shifts in China using the projections of four global gridded vegetation models (GGVMs) and an aggregate metric. The results show that half of naturally vegetated land surface could be under moderate or severe risk at the end of the 21(st) century under the middle and high emission scenarios. The areas with high risk are the Tibetan Plateau region and an area extended northeastward from the Tibetan Plateau to northeast China. With the three major factors considered, the change in carbon stocks is the main contributing factor to the high risk of ecosystem shifts. The change in carbon fluxes is another important contributing factor under the high emission scenario. The change in water fluxes is a less dominant factor except for the Tibetan Plateau region under the high emission scenario. Although there is considerable uncertainty in the risk assessment, the geographic patterns of the risk are generally consistent across different scenarios. The results could help develop regional strategies for ecosystem conservation to cope with climate change.
منابع مشابه
A multi-model analysis of risk of ecosystem shifts under climate change
Climate change may pose a high risk of change to Earth’s ecosystems: shifting climatic boundaries may induce changes in the biogeochemical functioning and structures of ecosystems that render it difficult for endemic plant and animal species to survive in their current habitats. Here we aggregate changes in the biogeochemical ecosystem state as a proxy for the risk of these shifts at different ...
متن کاملClimate change would enlarge suitable planting areas of sugarcanes in China
China’s sugar production and consumption continues to increase. This process is alreadyongoing for over 15 years and over 90% of the sugar production comes from sugarcane(Saccharum officinarum). Most of the sugarcane is planted in the south (e.g. the Chineseprovinces of Yunnan, Guangxi, Guangdong and Hainan) and it represents there a majoreconomic crop in these landscapes. As found virtually wo...
متن کاملPotential influence of climate-induced vegetation shifts on future land use and associated land carbon fluxes in Northern Eurasia
Climate change will alter ecosystem metabolism and may lead to a redistribution of vegetation and changes in fire regimes in Northern Eurasia over the 21st century. Land management decisions will interact with these climate-driven changes to reshape the region’s landscape. Here we present an assessment of the potential consequences of climate change on land use and associated land carbon sink a...
متن کاملChanges in Vegetation Growth Dynamics and Relations with Climate over China's Landmass from 1982 to 2011
Understanding how the dynamics of vegetation growth respond to climate change at different temporal and spatial scales is critical to projecting future ecosystem dynamics and the adaptation of ecosystems to global change. In this study, we investigated vegetated growth dynamics (annual productivity, seasonality and the minimum amount of vegetated cover) in China and their relations with climati...
متن کاملUnderstanding Regime Shift in Land Systems with System Dynamics
Land system change has major consequences for climate change, biodiversity and ecosystem services, and is central to the debate of sustainable development. Land policies aimed at guiding land system towards sustainable pathways need to be informed by better understanding of land system change, and often rely on the forecasting of future land system change. For example, initiatives of Reducing E...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016